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Given a set of conditions that may be present in
a patient, this paper presents a method for choos-
ing the optimal combination of treatment actions,
taking into account interactions among the avail-
able therapeutic and diagnostic procedures. The
multiple-threshold approach is an extension of the
threshold approach for individual conditions, and
it offers a precise way of computing the optimal
actions. In addition, tests for an example case
show a 11-29% increase in the expected utility of
treatments using this method.

INTRODUCTION

Given multiple possible conditions requiring treat-
ment and multiple possible therapy actions, a sig-
nificant problem is to select the best combination
of actions to cover all conditions. When the thera-
peutic and diagnostic actions for the conditions in-
teract, the problem becomes increasingly complex,
since one action may play a role in the diagnosis
or treatment of multiple problems.

Consider a patient with the possibility of both
renal and general abdominal injuries. A CT scan
can be used as a diagnostic test for each of the
possible conditions, but it may be less than opti-
mal for either condition alone. However, given a
reasonable likelihood of both conditions, it may be
the preferred option to cover both.
The threshold approachl was developed to

choose the optimal treatment for a single condi-
tion. In particular, given the options of not treat-
ing a condition, treating it directly, or performing
a test to decide whether or not to treat the condi-
tion, the method identifies the optimal treatment
given the probabilities of the conditions.

This paper presents the multiple-threshold ap-
proach, a method for choosing the optimal ac-
tion given multiple conditions and actions, extend-
ing the threshold approach to the general case.
Given the probabilities of a set of conditions, along
with therapeutic and diagnostic procedures, the

multiple-threshold approach produces the optimal
treatment for all the conditions, taking into ac-
count the diagnostic and therapeutic interactions.
The main benefit of this approach is that it pro-

vides a precise way of computing and describing
diagnostic and therapeutic interactions. In addi-
tion, the ability to reason about multiple condi-
tions improves the expected utility of the treat-
ment. Finally, the results can be used to direct in-
formation gathering towards those data that have
the most impact on the decision-making process.

THRESHOLD APPROACH

Given a medical condition with one therapeutic
action, the decision is to either treat or not treat
the condition. If a diagnostic test is available, the
decision also includes the possibility of performing
the test and then treating or not based on the
test outcome. For asingle condition, the optimal
action depends on the following information:

* the probability of the condition, p,

* the penalty (disutility) of leaving the condi-
tion untreated, ir,

* the cost (disutility) of the therapeutic
proceduret, r

* the cost (disutility) of the diagnostic test, 6

* the sensitivity, or true positive rate (TPR), of
the diagnostic test

* the specificity, or true negative rate (TIVR),
of the diagnostic test.

Note also that the false positive rate FPR = 1 -
TNR, and the false negative rate FNR = 1- TPR.
The utilities of the options can be calculated

from this information. The utility of treating is

tWe assume that the therapeutic procedure has the
same cost for a patient with or without the condition. The
results can be extended to handle the more general case.2
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Figure 1: Expected utility given the probability of
abdominal injury, from trauma domain.

simply r. The utility of not treating is pir. The
utility of acting based on the test outcome is

6 + p TPR* ir + p * FNR * 7r

+(1 -p)- TNR-O+(1 -p) - FPR*r.

These functions produce three linear equations, as
in the example shown in Figure 1. In turn, this
describes three regions over which the optimal ac-
tion is to do nothing, to test, and to treat directly.
When the probability of the condition is low, then
it is best to do nothing; when the probability is
high, then it is best to treat the patient directly;
and otherwise it is best to test first.

This basic model can be extended to handle
additional therapeutic and diagnostic procedures.
In this case there are more utility functions, but
again the regions over which one function domi-
niates the others define the probabilities over which
one action is optimal.
When there is incomplete information about the

true probability of the condition, the probability
is only known to lie within an interval. As long as
this interval falls within one region, the optimal
action remains the same, so no further information
gathering is necessary.3

MULTIPLE-THRESHOLD APPROACH

Consider the case where multiple conditions are
possible, each with its own probability. There are
two sources of interactions among the conditions:

* A single diagnostic procedure may be used to
test for multiple conditions. For instance, a
CT Scan can identify an abdominal injury or
a renal injury.

* A single therapeutic action may be shared
among therapeutic procedures for multiple

conditions. For instance, a laparotomy is a
component of the therapeutic procedures for
treating arl abdominal injury or a renal injury.

If a therapeutic or diagnostic action is shared
among multiple conditions, the disutility of the
overall care is reduced, since the disutility of the
action is assessed only once. This may cause a
procedure that was considered too morbid for in-
dividual conditions to become the best procedure,

For non-interacting conditions, conditions that
share neither therapeutic nor diagnostic actions,
the utility of actions is found by simply summing
the utilities of actions for each of the conditions.
In this case, the optimal actions are not affected
by the presence of multiple conditions.
When conditions interact, the optimal actions

are found by computing the utilities and p-robabil-
ities of. combinations of actions. If we denote by
u(a) the utility of a single action a, where a ther-
apeutic procedure is a set of actions, then we can
define the combined utility of a set of procedures
as U(P), where

U(P)-= u(a),
.aEUpPP

(1)

in other words the sum of the utilities of the ac-
tions after eliminating duplicates. The combined
probability is determilned by multiplying the prob-
abilities-of the test results (true positive,'tr-ue neg-
ative, false positive, false negative) together.

For each condition, the possible 'actions -are
grouped into the three possible types: treat---do
nothing, or test. There may be;multiple therapy
procedures, aIiJ there may`be-rutiple diagiostic
tests. For each fiOssibIenomUina' n ofinteracting
actibns-ore per conitio-thert is ;bDrrespond-
ing formula-that de§cribes the expected utility of
the combinatioy'th",lgori*hrn for determining
that formula's shhown in Figure 2.' each combi-
nation of actions tNay-be further decomposed into
the possibkle4e6st--oitcomes, since each test may
have a p-ositive or negative outcome. So the total
utility of the combination of actions is the sum of
the utility for each- possible set of test outcomes
multiplied by the probability of those outcomes.2
When su-mmed over all outcomes, the utilities of
the "do nothing" and thetapeutii aetions can be
removedfom the sum and caliated just once, as
they are in steps 1 and-2 oigure 2'. The prob-
ability of each set of test- 6*fcomes is' computed
in step 3c, and the utility is computed in step 3b,
with their product computedc-in step 3d. The final
sum is the sum over all "do nothing" utilities (step
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Figure 2: Algorithm for calculating the expected utility of a combination of actions for interacting conditions.

1), all therapeutic actions (step 2), and all sets of
test outcomes (step 4).
The algorithm above produces a formula de-

scribing the expected utility of a combination of
actions, where the conditions interact. Not all
conditions will interact, so the full algorithm first
groups conditions into interaction sets-sets of
conditions that interact-then computes formulas
for each interaction set and sums them to deter-

inie the final set of formulas. If interaction be-
tween two conditions is defined as above, namely
that the conditions share either a therapy action
or a diagnostic procedure, then the interaction set
is found by taking the transitive closure of the in-
teraction relation: if a condition i interacts with a

condition j in the set, then i is in the set as well.
The full algorithm is the following:

1. Calculate interaction sets II, I2, . . ., Im as de-
scribed above.

2. For each Ij, compute a set of formulas Fj as

in Figure 2.

3. For each {fl,..., fm}EF1 xF2 x ...xFm,
compute the sum: f = Sa I f,.

The formulas f computed in the final step are the
expected utilities of actions.

Given n conditions, each formula is the combi-
nation of terms of up to n variables, but no vari-
able has an exponent greater than 1. So the re-

sulting formula is of the form:

1 1

f(Pi, X,p,z) = *** ajl,...,jp1 ... Pn (2)
i,=O in=O

where each ik is 1 when variable k is present in
the term and 0 if variable k is absent, and where

ail,..Xin is an arbitrary coefficient of the term. The
formula is thus the sum of a constant term, a set
of terms with single variables pj, a set of cross

terms with 2 variables PjPk, a set of cross terms
with 3 variables PjPkPi, ..., a single cross term with
n variables Pi Pn. This has some interesting
mathematical properties:

* The projection of the function to any sin-
gle axis is linear: for any constants ci,
f(cl .... ., Ck I ,Pk,iCk+l) .. ., c)C = aPk + b.

* From this it follows that two functions inter-
sect at most once along a single axis. The
intersection of two functions may be nonlin-
ear, but the property holds in any case.

* Following from that, if a function fi >= fj at
each of the vertices of the hypercube [0, 1]n,
then fi >= fj at all points within the hyper-
cube. In fact this is true for any hypercube
in "n.

The last property allows formulas that are prov-

ably worse than others to be eliminated efficiently.
Given the set of formulas, there can be a large
number generated that are provably worse than
others over the probability space [0, 1]n (the set
of all legal probability values for each condition).
Empirically we have eliminated 50-60% of the can-

didate formulas using this property.
Given the set of formulas that represent

the expected utilities of the possible actions for
each condition, the remaining step is to determine
which combination of actions is optimal for a given
set of probabilities on the conditions. In fact, this
is the step that needs to be computed on-line;
the formula computation, which is NP-complete,
can be computed ahead of time. The optimal ac-

tions for a given set of probabilities P1,... *pn are
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1. Accumulate the "do nothing" actions. Sum the formulas (of the form ri * pi for condition i).
2. Accumulate the therapeutic procedures. Sum the utilities as in Equation 1.
3. Accumulate the diagnostic tests. For each possible combination of outcomes:

(a) Find the optimal therapy procedure for each condition with a positive test outcome.
(b) Sum the therapy utilities, eliminating duplicates and all therapy actions already used in step 2.

Add to this the penalty xi for each test i with a false-negative outcome.
(c) Multiply formulas for outcome probabilities (of the form aipi + bi for condition i) together.
(d) Multiply the outcome probability from step 3c by the outcome utility from step 3b.

4. Sum all formulas computed in step 3d to determine the total utility of the test actions.
5. Add the formulas from steps 1, 2, and 4 to determine the final formula.



merely the actions corresponding to the function
with maximum utility at that point:

fopt = arg maxfEFf(pPl I * * , Pn)

This is the n-dimensional equivalent of the thresh-
old approach presented earlier: there the goal was
to find the maximum function for a single given
probability p; here it is for a set of probabilities.

EXPERIMENTAL RESULTS

To test the method, we extracted a subset of the
knowledge base of TraumAID,4 a system for as-
sistance in trauma management. See Figure 3 for
the data used. The utilities range from -100 to
0, and the disutility scale was evoked from four
demographically different surgeons using the stan-
dard gamble technique. Note that conditions 1-3
interact, and conditions 4-5 interact.
We considered three test cases. Case I uses con-

ditions 1 and 2. Case II uses conditions 1-3. Case
III uses conditions 1-5. For Case I, the formulas
are shown in Figure 4(a) and the optimal actions
are shown in Figure 4(b). Note that the diagnos-
tic action "CT Scan" appears prominently in the
combined actions, although it would not for either
condition individually. This is a result of the shar-
ing of the test costs. Table 1 contains the results
for all of the cases. The overall utility of a method
was determined by numerical integration over the
[0, 1]" space. The two methods considered were
the multiple-threshold approach and the thresh-
old approach applied to each of the conditions in-
(lividually. As can be seen from the table, the
more interaction present in the case, the greater
the gain from the multiple-threshold approach.

DISCUSSION

The multiple-threshold approach has been pre-
sented as a method for precisely determining the
optimal actions to take given multiple interacting
conditions. Tests for an example case show an 11I
29'S) increase in the expected utility of treatment
for this approach over an approach that ignores
interactions.

Given the complex multi-dimensional and non-
linear nature of the formulas, the explicit com-
putation of the exact thresholds remains an out-
stalnding issue, requiring multi-dimensional geo-

metric representation and reasoning. We have not
needed to compute the thresholds explicitly, since
the relevant computations are to determine the op-
timal actions at particular points within the prob-
ability space. The implicit representation of the
threshold suffices for the computations we need
and foresee.
There may be some "bedside" information that

is easy to determine (negligible cost), but may
change the probability of a condition.3 As long as
the range of possible probabilities falls within one
region (as mentioned for the simple threshold ap-
proach), the treatment will remain the same, so no
further information gathering is necessary. If the
range crosses a threshold, then this can be used to
determine which information would be most use-
ful to gather. In the case of multiple conditions,
this will direct the information-gathering process
to those conditions whose probability needs to be
more precise before the treatment can be localized
within one region. The coordination of bedside
information gathering with the multiple-threshold
approach will be the next enhancement of the
method.
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Figure 3: Data used for empirical evaluation of multiple threshold approach. Case I uses data items 1-2,
Case II uses items 1-3, and Case III uses items 1-5. Utilities range from -100 to 0.
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Figure 4: Combinations of actions for Case I of the test data. (a) Surfaces produced by formulas. (b)
Optimal actions given probability of injuries. The regions at the top and bottom of (b) have been expanded
in the figure for visibility.

Table 1: Empirical results of the threshold and multiple-threshold approaches for the test cases, comparing
expected utilities of the multiple-threshold and threshold approaches.

Case conditions interaction sets multiple-threshold utility threshold utility improvement
I 2 {1,2} -24.62 -27.71 11%
II 3 {1,2,3} -39.18 -55.20 29%
III 5 {1,2,3} {4,5} -90.37 -121.82 26%

218

1. Abdominal Injury. Penalty for missed injury = -100.
Rx: Rx nonspecific [Laparotomy (-25) + Colostomy (-1)]
Dx: Peritoneal Lavage, cost -7, sensitivity 0.97, specificity 0.95
Dx: CT Scan Abdomen, cost -8, sensitivity 0.98, specificity 0.99

2. Renal Injury. Penalty for missed injury = -42.
Rx: Observe [Observe (-9)]
Rx: Inspect [Laparotomy (-25) + Inspect (-5) + Urologist consultation (-1)]
Dx: IVP, cost -9, sensitivity 0.99, specificity 0.99
Dx: CT Scan Abdomen, cost -8, sensitivity 0.98, specificity 0.99

3. Duodenal Injury. Penalty for missed injury = -41.
Rx: Repair [Check allergies (0) + Antibiotics (-1) + Laparotomy (-25) + Duodenum repair (-15)]
Dx: CT Scan Abdomen, cost -8, sensitivity 0.98, specificity 0.99

4. Tracheal Injury. Penalty for missed injury = -100.
Rx: Perform trachea repair [Perform thoracotomy (-30) + Trachea repair (-15)]
Dx: Bronchoscopy, cost -15, sensitivity 0.98, specificity 0.98

5. Bronchial Injury. Penalty for missed injury = -100.
Rx: Perform bronchus repair [Perform thoracotomy (-30) + Bronchus repair (-15)]
Dx: Bronchoscopy, cost -15, sensitivity 0.98, specificity 0.98


